Potencial fitotóxico de folhas de Fridericia platyphylla (Cham.) L.G.Lohmann (Bignoniaceae) sob condições de alta e baixa luminosidade

Autores

  • Rafael Ferreira dos Santos Departamento de Botânica - Universidade de Brasília https://orcid.org/0009-0007-4914-5082
  • William Madureira da Silva Departamento de Botânica - Universidade de Brasília

DOI:

https://doi.org/10.70782/heringeriana.v20i1.918075

Palavras-chave:

alelopatia, bioensaio, fitotoxicidade, metabolismo secundário

Resumo

O presente estudo teve como objetivo avaliar o potencial fitotóxico de extratos de folhas de Fridericia platyphylla (Bignoniaceae) coletadas sob condições de alta e baixa luminosidade. Foram analisadas folhas desenvolvidas sob alta e baixa luminosidade, comparando sua área foliar específica (AFE), composição de pigmentos fotossintéticos e efeitos em bioensaio com coleóptilos de trigo (Triticum aestivum). Os resultados demonstraram que as folhas de sombra apresentaram maior AFE, indicando uma adaptação morfológica para otimizar a captação de luz. A análise espectrofotométrica revelou concentrações mais elevadas de clorofila a, clorofila b e carotenoides nas folhas de sol, sugerindo um mecanismo fotoprotetor contra estresse oxidativo. No bioensaio, os extratos das folhas de sombra reduziram o alongamento dos coleóptilos, indicando a presença de compostos com leve efeito inibitório, possivelmente de natureza alelopática. Em contrapartida, os extratos das folhas de sol apresentaram efeitos mais pronunciados, podendo, em algumas concentrações, até estimular o crescimento. Esses achados sugerem que F. platyphylla exibe adaptações morfofisiológicas e químicas às variações de luminosidade, com potenciais implicações ecológicas e alelopáticas.

Referências

Alcerito, T., Barbo, F. E., Negri, G., Santos, D. Y. A. C., Meda, C. I., Young, M. C. M., Chávez, D., & Blatt, C. T. T. (2002). Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochemistry Systematic Ecology, 30(7): 677-683. https://doi.org/10.1016/S0305-1978(01)00149-1

Alves, L. L., Oliveira, P. V. A., França S. C., Alves, P. L. C., & Pereira, P. S. (2011). Atividade alelopática de extratos aquosos de plantas medicinais na germinação de Lactuca sativa L. e Bidens pilosa L. Revista Brasileira de Plantas Medicinais, 13(3): 328-336. https://doi.org/10.1590/S1516-05722011000300012

Atroch, E. M. A. C., Soares, A. M., Alvarenga, A. A., & Castro, E. M. (2001). Crescimento, teor de clorofilas, distribuição de biomassa e características anatômicas de plantas jovens de Bauhinia forficata Link. submetidas a diferentes condições de sombreamento. Ciência e Agrotecnologia, 25(4): 853-862.

Bielczynski, L. W., Łącki , M. K., Hoefnagels, I., Gambin, A., & Croce, R. (2017). Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiology, 175(4): 1634-1648. https://doi.org/10.1104/pp.17.00904

Brandão, G. C., Kroon, E. G., Santos, J. R., Stehmann, J. R., Lombardi, J. A., & Braga de Oliveira, A. (2010). Antiviral activity of Bignoniaceae species occuring in the State of Minas Gerais (Brazil): part 1. Letters Applied Microbiology, 51(4): 469-476. https://doi.org/10.1111/j.1472-765x.2010.02924.x

Demmig-Adams, B., & Adams III, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1): 21-26. https://doi.org/10.1016/S1360-1385(96)80019-7

Dhami, N., & Cazzonelli, C. I. (2020). Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regulation, 92: 455–477. https://doi.org/10.1007/s10725-020-00661-w

Fujii, Y., Parvez, S. S., Parvez, M. M., Ohmae, Y., & Iida, O. (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 3(4): 233-241. https://doi.org/10.1046/j.1444-6162.2003.00111.x

Givnish, T. J. (1988). Adaptation to Sun and Shade: A Whole-Plant Perspective. Australian Journal of Plant Physiology, 15: 63-92.

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2): 374-381. https://doi.org/10.1590/S0100-40422007000200026

Gratani, L., Covone, F., & Larcher, W. (2006). Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees, 20(5): 549-558. https://doi.org/10.1007/s00468-006-0070-6

Grbović, F., Gajić, G., Branković, S., Simić, Z., Ćirić, A., Rakonjac, L., Pavlović, P., & Topuzović, M. (2018). Allelopathic potential of selected woody species growing on fly-ash deposits. Archives Biological Sciences, 71(1): 83-94. https://doi.org/10.2298/ABS180823050G

Habermann, E., Pereira, V. C., Imatomi, M., Pontes, F. C., & Gualtieri, S. C. J. (2015). Fitotoxicidade e fracionamento biodirigido dos extratos de cascas de Blepharocalyx salicifolius (Kunth) O.Berg (Myrtaceae). Biotemas, 28(1): 37-44. http://dx.doi.org/10.5007/2175-7925.2015v28n1p37

Karplus, M., & Porter, RN. (1970). Atoms and Molecules: An Introduction for Students of Physical Chemistry. The Benjamin, London.

Landi, M., Zivcak, M., Sytar, O., Brestic, M., & Allakhverdiev, S. I. (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica Et Biophysica Acta – Bioenergetics, 1861(2): 131-148. https://doi.org/10.1016/j.bbabio.2019.148131

Lichtenthaler, H. K., AC, A., Marek, M. V., Kalina, J., & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8): 577-588. https://doi.org/10.1016/j.plaphy.2007.04.006

Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5): 591-592. https://doi.org/10.1042/bst0110591

Lima, C. A., Cubero, M. C. Z., Franco, Y. E. M., Rodrigues, C. D. P., Nascimento, J. R., Vendramini-Costa, D. B., Sciani, J. M., Rocha, C. Q., & Longato, G. B. (2022). Antiproliferative activity of two unusual dimeric flavonoids, brachydin E and brachydin F, isolated from Fridericia platyphylla (Cham.) LG Lohmann: in vitro and molecular docking evaluation. BioMed Research International.

Lorenzi, H., & Souza, H. M. (1995). Plantas ornamentais no Brasil. Nova Odessa: Editora Plantarum.

Nitsch, JP., & Nitsch, C. (1956). Studies on the growth coleoptile and first internode sections. A new sensitive straight-growth test for auxins. Plant Physiology, 31(2): 94-111. https://doi.org/10.1104/pp.31.2.94

Poorter, H., & Garnier, E. (1999). Ecological significance of inherent variation in relative growth rate. Handbook of Functional Plant Ecology. New York, 81–120.

Rice, E. L. (1984). Allelopathy. 2ª ed. San Diego, Academic Press.

Rizvi, S. J. H., & Rizvi, V. (1992). Exploitation of allelochemicals in improving crop productivity. In: Rizvi, S. J. H., Rizvi, V. (eds) Allelopathy. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2376-1_25

Rocha, C. Q., Faria, F. D., Marcourt, L., Ebrahimi, S. N., Kitano, B. T., Ghilardi, A. F., Ferreira, A. L., Almeida, A. C. A., Dunder, R. J., Souza-Brito, A. R. M., Hamburger, M., Vilegas, W., Queiroz, E. F., & Wolfender, J. L. (2017). Gastroprotective effects of hydroethanolic root extract of Arrabidaea brachypoda: evidences of cytoprotection and isolation of unusual glycosylated polyphenols. Phytochemistry, 135: 93-105. https://doi.org/10.1016/j.phytochem.2016.12.002

Santos, R. S., Menezes Filho, A. C. P., Batista-Ventura, H. R. F., Castro, C. S. F., & Ventura, M. V. A. (2022). Prospecção fitoquímica, teor de bixina e atividade alelopática de extratos de Bixa orellana L. Brazilian Journal of Science, 1(12): 96-107. https://doi.org/10.14295/bjs.v1i12.243

Serpeloni, J. M., Specian, A. F. L., Ribeiro, D. L., Benício, L. M., Nunes, H. L., Franchi, L. P., Rocha, C. Q., Vilegas, W., Varanda, E. A., & Cólus, I. M. S. (2019). Fridericia platyphylla (Cham.) L. G. Lohmann root extract exerts cytotoxic and antiproliferative effects on gastric tumor cells and downregulates BCL-XL, BIRC5, and MET genes. Human & Experimental Toxicology, 39(3): 1-17. https://doi.org/10.1177/0960327119888261

Silvestre, D. M., Kolb, R. M., Frei, F., & Santos, C. (2013). Phytotoxicity of organic extracts of Turnera ulmifolia L. and Turnera diffusa Willd.ex Schult. in cucumber seeds. Acta Botanica Brasilica, 27(3): 476-482. https://doi.org/10.1590/S0102-33062013000300003

Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal. 5ª ed. Porto Alegre, Artmed.

Trezzi, M. M., Vidal, R. A., Balbinot Junior, A. A., Bittencourt, H. V. H., & Souza Filho, A. P. S. (2016). Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1): 53-60. https://doi.org/10.1080/17429145.2016.1159342

Downloads

Publicado

2026-02-09

Como Citar

Santos, R. F. dos, & Silva, W. M. da. (2026). Potencial fitotóxico de folhas de Fridericia platyphylla (Cham.) L.G.Lohmann (Bignoniaceae) sob condições de alta e baixa luminosidade. Heringeriana, 20(1), e918075. https://doi.org/10.70782/heringeriana.v20i1.918075

Edição

Seção

Artigos Originais

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.