Effects of substrate amendment with biochar and arbuscular mycorrhizal fungi on the growth of Theobroma speciosum cultivated seedlings: a preliminary experiment

Autores

  • Karin Elisabeth von Schmalz Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas https://orcid.org/0009-0006-8807-8567
  • Ruan Santos de Farias Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas, Laboratório de Microbiologia https://orcid.org/0009-0006-8648-1731
  • Vanessa Nascimento Brito Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas, Laboratório de Microbiologia https://orcid.org/0009-0001-1268-7490
  • Isadora França Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas, Laboratório de Botânica
  • Rodolfo Salm Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas, Laboratório de Ecologia
  • Emil José Hernández-Ruz Universidade Federal do Pará (UFPA), Faculdade de Ciências Biológicas, Laboratório de Zoologia https://orcid.org/0000-0002-3593-3260

DOI:

https://doi.org/10.70782/heringeriana.v19i1.918064

Palavras-chave:

agroforestry, Amazonia, cacauí, forest restoration, soil amendment

Resumo

Theobroma speciosum is an Amazonian species of high ecological and potential economic value, and has an untapped potential for agroforestry cultivation. The experiment, developed at the Experimental Shade House of the Federal University of Pará in Altamira, tested the effects of several types of substrates with different compositions, including varied proportions of biochar and inoculation with arbuscular mycorrhizal fungi (AMF), with the aim of testing the species’ tolerance and growth under these conditions. The application of biochar alone did not improve growth of seedlings, with higher concentrations of 30% being detrimental for the plants. The composition of 15% biochar with AMF inoculation yielded larger seedlings after six months. Our results suggest that soil enrichment with a mixture of low proportions of biochar and the inoculation of AMF may improve productivity in T. speciosum and allow the inclusion of the species in soils needing biochar-mediated pollution remediation even under extreme temperatures, although further studies are needed to ascertain optimal soil amendment.

Referências

Akhter, A., Hage-Ahmed, K., Soja, G. & Steinkellner, S. (2015) Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science 6. https://doi.org/10.3389/fpls.2015.00529

Anderson, T.W. & Darling, D.A. (1954) A Test of Goodness of Fit. Journal of the American Statistical Association 49: 765–769. https://doi.org/10.1080/01621459.1954.10501232

Armarego-Marriott, T., Sandoval-Ibañez, O. & Kowalewska, Ł. (2020) Beyond the darkness: recent lessons from etiolation and de-etiolation studies. C. Raines (ed.). Journal of Experimental Botany 71: 1215–1225. https://doi.org/10.1093/jxb/erz496

Barbosa, L., Isadora & Hernández Ruz, E. (2019) Primer registro de la dispersión de frutos de Theobroma speciosum. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 43: 518–520. https://doi.org/10.18257/raccefyn.891

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67. https://doi.org/10.18637/jss.v067.i01

Bonser, S.P. & Aarssen, L.W. (1994) Plastic allometry in young sugar maple ( Acer saccharum ): adaptive responses to light availability. American Journal of Botany 81: 400–406. https://doi.org/10.1002/j.1537-2197.1994.tb15463.x

Brtnicky, M., Datta, R., Holatko, J., Bielska, L., Gusiatin, Z.M., Kucerik, J., Hammerschmiedt, T., Danish, S., Radziemska, M., Mravcova, L., Fahad, S., Kintl, A., Sudoma, M., Ahmed, N. & Pecina, V. (2021) A critical review of the possible adverse effects of biochar in the soil environment. Science of The Total Environment 796: 148756. https://doi.org/10.1016/j.scitotenv.2021.148756

Carril, P., Ghorbani, M., Loppi, S. & Celletti, S. (2023) Effect of Biochar Type, Concentration and Washing Conditions on the Germination Parameters of Three Model Crops. Plants 12: 2235. https://doi.org/10.3390/plants12122235

Chauhan, P.K., Upadhyay, S.K., Rajput, V.D., Dwivedi, P., Minkina, T. & Wong, M.H. (2024) Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. Environmental Geochemistry and Health 46: 41. https://doi.org/10.1007/s10653-023-01823-1

Chen, X.W., Wong, J.T.F., Chen, Z.T., Tang, T.W.L., Guo, H.W., Leung, A.O.W., Ng, C.W.W. & Wong, M.H. (2018) Effects of biochar on the ecological performance of a subtropical landfill. Science of The Total Environment 644: 963–975. https://doi.org/10.1016/j.scitotenv.2018.06.379

Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D. & Julson, J.L. (2014) Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science 60: 393–404. https://doi.org/10.1080/03650340.2013.789870

Dardengo, J.D.F.E., Rossi, A.A.B., Oliveira, L.O.D., Pena, G.F., Rivas, L.H., Silva, C.J.D. & Rufatto, F.P. (2021) Structure and genetic diversity of Theobroma speciosum (Malvaceae) and implications for Brazilian Amazon conservation. Rodriguésia 72: e02022018. https://doi.org/10.1590/2175-7860202172023

Debab, A., Boudjabi, S., Chenchouni, H., Ababsa, N. & Brahimi, A. (2024) Effects of incorporating biochar on soil quality and barley yield in microplastics-contaminated soils. Chemosphere 368: 143760. https://doi.org/10.1016/j.chemosphere.2024.143760

Dinno, A. (2015) Nonparametric Pairwise Multiple Comparisons in Independent Groups using Dunn’s Test. The Stata Journal: Promoting communications on statistics and Stata 15: 292–300. https://doi.org/10.1177/1536867X1501500117

Duwiejuah, A.B., Mutawakil, Z. & Oyelude, E.O. (2024) Eco-friendly banana peel biochar for adsorption of toxic metals from landfill treatment pond leachate. International Journal of Phytoremediation: 1–10. https://doi.org/10.1080/15226514.2024.2428434

Edeh, I.G., Mašek, O. & Buss, W. (2020) A meta-analysis on biochar’s effects on soil water properties – New insights and future research challenges. Science of The Total Environment 714: 136857. https://doi.org/10.1016/j.scitotenv.2020.136857

Elmer, W.H. & Pignatello, J.J. (2011) Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Disease 95: 960–966. https://doi.org/10.1094/PDIS-10-10-0741

Fernandes, A.R., Souza, E.S.D., De Souza Braz, A.M., Birani, S.M. & Alleoni, L.R.F. (2018) Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration 190: 453–463. https://doi.org/10.1016/j.gexplo.2018.04.012

Figueira-Galán, D., Heupel, S., Duelli, G., Tomasi Morgano, M., Stapf, D. & Requena, N. (2023) Exploring the synergistic effects of biochar and arbuscular mycorrhizal fungi on phosphorus acquisition in tomato plants by using gene expression analyses. Science of The Total Environment 884: 163506. https://doi.org/10.1016/j.scitotenv.2023.163506

Forzza, R.C., Zappi, D. & Souza, V.C. (2024) Theobroma speciosum Willd. ex Spreng. Flora e Funda do Brasil. Available from: https://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ (November 26, 2024)

Frišták, V., Beliančínová, K., Polťáková, L., Moreno-Jimenéz, E., Zimmerman, A.R., Ďuriška, L., Černičková, I., Laughinghouse Iv, H.D. & Pipíška, M. (2024) Engineered Mg-modified biochar-based sorbent for arsenic separation and pre-concentration. Scientific Reports 14: 28680. https://doi.org/10.1038/s41598-024-79446-4

Gomez-Zavaglia, A., Mejuto, J.C. & Simal-Gandara, J. (2020) Mitigation of emerging implications of climate change on food production systems. Food Research International 134: 109256. https://doi.org/10.1016/j.foodres.2020.109256

Gross, J. & Ligges, U. (2015) nortest: Tests for Normality.

Guerra, T.J.A., Hamada, M.O.S., Serra, A., Hernández-Ruz, E.J., Leão, F.M., Costa, W.S.L., Ferreira, T.R.Z., Stehlin, A.P.C., Costa, G.S., Nascimento, N.L., Sousa, N.K., Lima, A.S.C., Lima, K.D., Pinto, R.S. & Araújo, E. (2023) Manual de Boas Práticas para a Restauração Ecológica da Volta Grande do Xingu. 1st ed. Biocev Projetos Inteligentes, Belo Horizonte. 121 pp.

Haase, D.L. (2008) Understanding forest seedling quality: measurements and interpretation. Tree Planters’ Notes 52: 24–30.

Harville, D.A. (1977) Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. Journal of the American Statistical Association 72: 320–338. https://doi.org/10.1080/01621459.1977.10480998

Hashem, A., Kumar, A., Al-Dbass, A.M., Alqarawi, A.A., Al-Arjani, A.-B.F., Singh, G., Farooq, M. & Abd_Allah, E.F. (2019) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of Biological Sciences 26: 614–624. https://doi.org/10.1016/j.sjbs.2018.11.005

Hertel, T., Elouafi, I., Tanticharoen, M. & Ewert, F. (2021) Diversification for enhanced food systems resilience. Nature Food 2: 832–834. https://doi.org/10.1038/s43016-021-00403-9

Hokche, O., Berry, P.E., Huber, O., & Fundación Instituto Botánico de Venezuela eds. (2008) Nuevo catálogo de la flora vascular de Venezuela. Fundación Instituto Botánico de Venezuela, Caracas, Venezuela. 859 pp.

Holm, S. (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6: 65–70.

Hu, J., Wu, F., Wu, S., Lam, C.L., Lin, X. & Wong, M.H. (2014) Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance). Scientific Reports 4: 4671. https://doi.org/10.1038/srep04671

Iqbal, K., Noor, S., Shah, A. & Amin, A. (2022) Assessment of in vitro and in vivo effect of Quercetin 3-Glucoside, Oxyresveratrol and Quercetin O-Hexoside against Leishmania tropica. Brazilian Journal of Pharmaceutical Sciences 58: e21306. https://doi.org/10.1590/s2175-97902022e21306

Jabborova, D., Annapurna, K., Al-Sadi, A.M., Alharbi, S.A., Datta, R. & Zuan, A.T.K. (2021a) Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences 28: 5490–5499. https://doi.org/10.1016/j.sjbs.2021.08.016

Jabborova, D., Annapurna, K., Azimov, A., Tyagi, S., Pengani, K.R., Sharma, P., Vikram, K.V., Poczai, P., Nasif, O., Ansari, M.J. & Sayyed, R.Z. (2022) Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. Frontiers in Plant Science 13: 947547. https://doi.org/10.3389/fpls.2022.947547

Jabborova, D., Wirth, S., Halwani, M., Ibrahim, M.F.M., Azab, I.H.E., El-Mogy, M.M. & Elkelish, A. (2021b) Growth Response of Ginger (Zingiber officinale), Its Physiological Properties and Soil Enzyme Activities after Biochar Application under Greenhouse Conditions. Horticulturae 7: 250. https://doi.org/10.3390/horticulturae7080250

Jaimes-Suárez, Y.Y., Carvajal-Rivera, A.S., Galvis-Neira, D.A., Carvalho, F.E.L. & Rojas-Molina, J. (2022) Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. Frontiers in Plant Science 13: 921469. https://doi.org/10.3389/fpls.2022.921469

Jørgensen, P.M., Nee, M., Beck, S., Missouri Botanical Garden, Herbario Nacional de Bolivia, Herbario Nacional Forestal Martín Cárdenas, Herbario del Oriente Boliviano, & New York Botanical Garden eds. (2014) Catálogo de las plantas vasculares de Bolivia. Missouri Botanical Garden Press, St. Louis, Missouri. 2 pp.

Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y., Luo, Y., Ok, Y.S., Palansooriya, K.N., Shepherd, J., Stephens, S., Weng, Z. (Han) & Lehmann, J. (2021) How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13: 1731–1764. https://doi.org/10.1111/gcbb.12885

Kakouridis, A., Hagen, J.A., Kan, M.P., Mambelli, S., Feldman, L.J., Herman, D.J., Weber, P.K., Pett‐Ridge, J. & Firestone, M.K. (2022) Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist 236: 210–221. https://doi.org/10.1111/nph.18281

Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I.J., Schüth, C. & Graber, E.R. (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of The Total Environment 626: 953–961. https://doi.org/10.1016/j.scitotenv.2018.01.157

Lagneaux, E., Andreotti, F. & Neher, C.M. (2021) Cacao, copoazu and macambo: Exploring Theobroma diversity in smallholder agroforestry systems of the Peruvian Amazon. Agroforestry Systems 95: 1359–1368. https://doi.org/10.1007/s10457-021-00610-0

Lenth, R. (2024) emmeans: Estimated Marginal Means, aka Least-Squares Means.

Li, L., Zhang, Y.-J., Novak, A., Yang, Y. & Wang, J. (2021) Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water 13: 407. https://doi.org/10.3390/w13040407

Li, T., Yang, H., Zhang, N., Dong, L., Wu, A., Wu, Q., Zhao, M., Liu, H., Li, Y. & Wang, Y. (2024) Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil. Environmental Science and Pollution Research 31: 11214–11227. https://doi.org/10.1007/s11356-024-31870-9

Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. & Wang, Y. (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194: 495–503. https://doi.org/10.1016/j.chemosphere.2017.12.025

Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. (2021) performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software 6: 3139. https://doi.org/10.21105/joss.03139

Mar, J.M., Da Fonseca Júnior, E.Q., Corrêa, R.F., Campelo, P.H., Sanches, E.A. & Bezerra, J.D.A. (2024) Theobroma spp.: A review of it’s chemical and innovation potential for the food industry. Food Chemistry Advances 4: 100683. https://doi.org/10.1016/j.focha.2024.100683

Mar, J.M., Da Silva, L.S., Moreira, W.P., Biondo, M.M., Pontes, F.L.D., Campos, F.R., Kinupp, V.F., Campelo, P.H., Sanches, E.A. & Bezerra, J.D.A. (2021) Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chemistry 356: 129723. https://doi.org/10.1016/j.foodchem.2021.129723

Martini, M.H. & Tavares, D. de Q. (2005) Seed reserves from seven species of the genus Theobroma: a review. Rev. Inst. Adolfo Lutz 64: 10–19.

Matos, G.S.B.D., Brasil Neto, A.B., Gama, M.A.P., Gonçalves, D.A.M., Cardoso, D.F.S.R. & Ramos, H.M.N. (2023) Soil potentially toxic element contents in an area under different land uses in the Brazilian Amazon. Heliyon 9: e17108. https://doi.org/10.1016/j.heliyon.2023.e17108

Medeiros, A.C., Faial, K.R.F., Do Carmo Freitas Faial, K., Da Silva Lopes, I.D., De Oliveira Lima, M., Guimarães, R.M. & Mendonça, N.M. (2017) Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil. Marine Pollution Bulletin 123: 156–164. https://doi.org/10.1016/j.marpolbul.2017.09.002

Meng, L., Wu, Y., Mu, M., Wang, Z., Chen, Z., Wang, L., Ma, Z., Cui, G. & Yin, X. (2023) Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover (Trifolium pretense L.). Frontiers in Plant Science 14: 1112002. https://doi.org/10.3389/fpls.2023.1112002

Mickan, B.S., Abbott, L.K., Stefanova, K. & Solaiman, Z.M. (2016) Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 26: 565–574. https://doi.org/10.1007/s00572-016-0693-4

Mosharrof, M., Uddin, Md.K., Jusop, S., Sulaiman, M.F., Shamsuzzaman, S.M. & Haque, A.N.A. (2021) Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture 11: 219. https://doi.org/10.3390/agriculture11030219

Mukherjee, A. & Lal, R. (2014) The biochar dilemma. Soil Research 52: 217. https://doi.org/10.1071/SR13359

Pauwels, R., Graefe, J. & Bitterlich, M. (2023) An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza 33: 165–179. https://doi.org/10.1007/s00572-023-01106-8

Paz, F.S., Pinto, C.E., De Brito, R.M., Imperatriz-Fonseca, V.L. & Giannini, T.C. (2021) Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators. J. Strange (ed.). Journal of Economic Entomology 114: 710–722. https://doi.org/10.1093/jee/toaa284

R Core Team (2024) R: A Language and Environment for Statistical Computing.

Razzaghi, F., Obour, P.B. & Arthur, E. (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361: 114055. https://doi.org/10.1016/j.geoderma.2019.114055

Regmi, A., Singh, S., Moustaid-Moussa, N., Coldren, C. & Simpson, C. (2022) The Negative Effects of High Rates of Biochar on Violas Can Be Counteracted with Fertilizer. Plants 11: 491. https://doi.org/10.3390/plants11040491

Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R. & Lehmann, J. (2010) Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environmental Science & Technology 44: 827–833. https://doi.org/10.1021/es902266r

Román-Dañobeytia, F., Cabanillas, F., Lefebvre, D., Farfan, J., Alferez, J., Polo-Villanueva, F., Llacsahuanga, J., Vega, C.M., Velasquez, M., Corvera, R., Condori, E., Ascorra, C., Fernandez, L.E. & Silman, M.R. (2021) Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering 159: 106097. https://doi.org/10.1016/j.ecoleng.2020.106097

RStudio Team (2024) RStudio: Integrated Development for R.

Saeed, F., Chaudhry, U.K., Raza, A., Charagh, S., Bakhsh, A., Bohra, A., Ali, S., Chitikineni, A., Saeed, Y., Visser, R.G.F., Siddique, K.H.M. & Varshney, R.K. (2023) Developing future heat-resilient vegetable crops. Functional & Integrative Genomics 23: 47. https://doi.org/10.1007/s10142-023-00967-8

Shen, Y., Song, S., Thian, B.W.Y., Fong, S.L., Ee, A.W.L., Arora, S., Ghosh, S., Li, S.F.Y., Tan, H.T.W., Dai, Y. & Wang, C.-H. (2020) Impacts of biochar concentration on the growth performance of a leafy vegetable in a tropical city and its global warming potential. Journal of Cleaner Production 264: 121678. https://doi.org/10.1016/j.jclepro.2020.121678

Singh, H., Northup, B.K., Rice, C.W. & Prasad, P.V.V. (2022) Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4: 8. https://doi.org/10.1007/s42773-022-00138-1

Siviero, A., de Macedo, P.E.F. & Moreira, G.T.S. (2022) Doenças em cacaueiro e cupuaçuzeiro no Acre. Agrotrópica 34: 159–164.

Solaiman, Z.M., Abbott, L.K. & Murphy, D.V. (2019) Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Scientific Reports 9: 5062. https://doi.org/10.1038/s41598-019-41671-7

Sousa Silva, C.R. & Figueira, A. (2005) Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunitz-like trypsin inhibitor sequences. Plant Systematics and Evolution 250: 93–104. https://doi.org/10.1007/s00606-004-0223-2

Souza, E.J. de, Cunha, F.F. da, Magalhães, F.F., Silva, T.R. da, Borges, M.C.R.Z. & Roque, C.G. (2013) Métodos para estimativa da umidade do solo na capacidade de campo. Revista de Ciências Agro-Ambientais, Alta Floresta 11: 43–50.

Sun, J., Li, W., Li, C., Chang, W., Zhang, S., Zeng, Y., Zeng, C. & Peng, M. (2020) Effect of Different Rates of Nitrogen Fertilization on Crop Yield, Soil Properties and Leaf Physiological Attributes in Banana Under Subtropical Regions of China. Frontiers in Plant Science 11: 613760. https://doi.org/10.3389/fpls.2020.613760

Teixeira, P.C., Donagemma, G.K., Fontana, A. & Teixeira, W.G. (2017) Manual de Métodos de Análise de Solo. 3rd ed. Embrapa, Brasília - DF. 573 pp.

Tusar, H.M., Uddin, Md.K., Mia, S., Suhi, A.A., Wahid, S.B.A., Kasim, S., Sairi, N.A., Alam, Z. & Anwar, F. (2023) Biochar-Acid Soil Interactions—A Review. Sustainability 15: 13366. https://doi.org/10.3390/su151813366

Wang, H., Nan, Q., Waqas, M. & Wu, W. (2022) Stability of biochar in mineral soils: Assessment methods, influencing factors and potential problems. Science of The Total Environment 806: 150789. https://doi.org/10.1016/j.scitotenv.2021.150789

Wang, T., Wu, J., Hu, T., Wang, C., Li, S., Li, Z. & Chen, J. (2024) Mechanistic insights into adsorption-desorption of PFOA on biochars: Effects of biomass feedstock and pyrolysis temperature, and implication of desorption hysteresis. Science of The Total Environment 957: 177668. https://doi.org/10.1016/j.scitotenv.2024.177668

Wen, Y., Shi, F., Zhang, B., Li, K., Chang, W., Fan, X., Dai, C.L. & Song, F. (2024) Rhizophagus irregularis and biochar can synergistically improve the physiological characteristics of saline‐alkali resistance of switchgrass. Physiologia Plantarum 176: e14367. https://doi.org/10.1111/ppl.14367

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. & Yutani, H. (2019) Welcome to the Tidyverse. Journal of Open Source Software 4: 1686. https://doi.org/10.21105/joss.01686

Wijerathna-Yapa, A. & Pathirana, R. (2022) Sustainable Agro-Food Systems for Addressing Climate Change and Food Security. Agriculture 12: 1554. https://doi.org/10.3390/agriculture12101554

Yang, Y., Ahmed, W., Ye, C., Yang, L., Wu, L., Dai, Z., Khan, K.A., Hu, X., Zhu, X. & Zhao, Z. (2024) Exploring the effect of different application rates of biochar on the accumulation of nutrients and growth of flue-cured tobacco (Nicotiana tabacum). Frontiers in Plant Science 15: 1225031. https://doi.org/10.3389/fpls.2024.1225031

Yesto, S.J.K., Shang, H., Lv, X., Abdalla, J.T., Wang, T. & Yu, Y. (2024) Effect of inorganic component of biochar on lead adsorption performance and the enhancement by MgO modification. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-35556-0

Yusif, S., Muhammad, I., Hayatu, N., Sauwa, M., Tafinta, I., Mohammed, M., Lukman, S., Abubakar, G. & Hussain, A. (2016) Effects of Biochar and Rhizobium Inoculation on Nodulation and Growth of Groundnut in Sokoto State, Nigeria. Journal of Applied Life Sciences International 9: 1–9. https://doi.org/10.9734/JALSI/2016/27297

Zar, J.H. (2014) Spearman Rank Correlation: Overview. In: R. S. Kenett, N. T. Longford, W. W. Piegorsch, & F. Ruggeri (eds.) Wiley StatsRef: Statistics Reference Online. Wiley.

Zhang, N., Xing, J., Wei, L., Liu, C., Zhao, W., Liu, Z., Wang, Y., Liu, E., Ren, X., Jia, Z., Wei, T., Siddique, K.H.M. & Zhang, P. (2025) The potential of biochar to mitigate soil acidification: a global meta-analysis. Biochar 7: 49. https://doi.org/10.1007/s42773-025-00451-5

Zhao, S., Yan, L., Kamran, M., Liu, S. & Riaz, M. (2024a) Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils. Plants 13: 3289. https://doi.org/10.3390/plants13233289

Zhao, T., Wang, L. & Yang, J. (2024b) Synergistic effects of combined application of biochar and arbuscular mycorrhizal fungi on the safe production of rice in cadmium contaminated soil. Science of The Total Environment 951: 175499. https://doi.org/10.1016/j.scitotenv.2024.175499

Zurek, M., Hebinck, A. & Selomane, O. (2022) Climate change and the urgency to transform food systems. Science 376: 1416–1421. https://doi.org/10.1126/science.abo2364

Downloads

Publicado

2025-12-29

Como Citar

von Schmalz, K. E., Farias, R. S. de, Brito, V. N., França, I., Salm, R., & Hernández-Ruz, E. J. (2025). Effects of substrate amendment with biochar and arbuscular mycorrhizal fungi on the growth of Theobroma speciosum cultivated seedlings: a preliminary experiment. Heringeriana, 19(1), e918064. https://doi.org/10.70782/heringeriana.v19i1.918064

Edição

Seção

Artigos Originais

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.